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Abstract 

We present an agent-based mechanism that acts as a mediator module between theorem proving sys-
tems and mathematical knowledge bases containing information that is necessary for the constructions 
of proofs. Unlike the more popular user-oriented mediators who work as information agents to provide 
the so-called value-added services to the collected data before presenting it to users or user applications, o 
our multi-) agents are more task-oriented. That is, our agents work in tandem with the user or user 
application on the tasks the user is trying to solve. This approach is particularly suitable to mathematical o  
knowledge retrieval in theorem proving as ) checking for applicable axioms/definitions/theorems from 
the knowledge base can be done independently from the proof search process concurrently carried out oe  
by the prover, and ) the prover and the mediator operate on two different search spaces and the search 
outcome brought about by the mediator can be of great benefit to the prover, e.g. to avoid the prover from 
exploring many unnecessary or irrelevant proof steps, to keep the prover’s search space more manageable 
and the constructed proof more comprehensible. 

1 Introduction 

Information is crucial in the process of planning and decision making. However, information and infor-
mation systems are both increasing in size; there is a tendency towards information overload. This is par-
ticularly the case when one wishes to obtain the relevant information from the Internet having only a few 
descriptors or keywords at hand. Thus, research in software agents, in particular information mediators, 
has placed much emphasis on the development of mechanisms that allow more useful information to be 
produced from the raw input data. These include information selection, filtration, and integration. The more 
prominent research groups working in this area include the collective work on Large-scale Interoperation, 
Mediation, and Composition (LIC) led by Gio Wiederhold at Stanford University [24], the University of 
Maryland Information Mediation Project [38], the Information Agents Group at the University of Southern 
California, Information Sciences Institute [19], the Software Agents Group of the MIT Media Laboratory 
[35], etc. to mention a few. In general, the mediators provide intermediate services, linking data resources 
and users’ application programs. Their function is to provide integrated information obtained from diverse 
and heterogeneous data sources. More specifically, the mediators perform (see [43]): 

(i) Accessing and retrieving relevant data from multiple heterogeneous resources; 

(ii) Abstracting and transforming retrieved data into a common representation and semantics; 
A preliminary version of this paper appears in [39]. 
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(iii) Integrating the homogenized data according to matching descriptors and keys; 

(iv) Reducing the integrated data to increase the relevance and information density in the result to be trans-
mitted. 

Wiederhold coins the term value-added services to refer to the above functionalities undertaken by mediators 
that basically “convert data to information”. 

However, as most of these projects aim at information agents whose goals are more focused on assisting 
users or clients in handling information, they are more user-oriented. That is, they are customized to the user 
by learning the user’s interests/preferences/habits/etc., or getting personalized. That way the agent becomes 
more useful to a particular user. In this paper we argue that there is yet another way in which information 
agents can act as mediators between information resources and user application, namely task-oriented. Task-
oriented information agents necessarily have access to the task(s) the user is trying to accomplish and know 
what information is required to solve such tasks and, thereby, extract the relevant information from the 
data sources and possibly format/integrate the obtained data to make them readily usable to user or user 
application. We observe that this aspect of information agents has been largely neglected thus far. We 
motivate our approach by an application in mathematical assistant systems. 

Mathematical assistant systems (MathAS, see e.g. [34, 33] and the references therein) provide users 
with integrated environments in which various mathematics-related tasks including learning, teaching, ref-
erencing, proving theorems, carrying out complex computations, etc. can be accomplished. The long term 
visions of MathAS is to provide an environment with two ends: 

High end: At this end, the system interacts with the human users such as mathematicians or students 
(who learn mathematics) and also the Digital Libraries that provide the data sources for activities 
undertaken by the system. 

Low end: At this end, the system is connected to other systems that provide the services to be used 
to accomplish its tasks. Examples of such service-providers include: computer algebra systems, 
traditional theorem provers built by the automated deduction community, model checking systems, 
databases containing mathematical materials used by other systems, etc. 

At the high end, MathAS typically have to deal with various formats of data and representations which 
are in general informal, and the approaches to problem solving are varied at different levels of abstraction. 
At the other end, MathAS connect to systems such as theorem provers, computer algebra systems, databases, 
etc. whose data formats are formal and well-specified. Moreover, at this end the connected systems generally 
follow pre-defined approaches to problem solving at fixed levels of abstraction. 

In order to bridge the gap between the two ends, it’s important that MathAS be able to carry out the 
reasoning or computation at different levels of abstraction and take advantage of the facilities provided 
by existing systems to provide the value-added services to the users or user applications. This paper is 
concerned mainly with the problem of proving mathematical theorems at levels of abstraction suitable to be 
communicated directly to human users. As such, tools that enable proof search and stepwise construction 
of proofs must be supported by these systems. Whereas traditional theorem provers work at the logical 
level, human mathematicians prove theorems at the more abstract levels. To overcome this problem, new 
approaches have been introduced in which most low level logical operations are abstracted away and mainly 
domain specific mathematical knowledge is used to guide the construction of the proofs. The area is known 
as proof planning and such domain specific mathematical knowledge comes in as the strategies or proof 
methods made available to the proof planner (cf. [11] and [18, 31, 30] and the references therein). 
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Due to Huang [17] the notion of assertion comprises declarative mathematical knowledge such as defini-
tions, theorems, and axioms.1 This knowledge can be either stored in a well-defined format in mathematical 
databases KsB s or distributed over a network of Digital Libraries. In this paper, we propose a distributed 
mediator module between KsB s and a theorem proving system T P which is independent of the particular 
proof representation format of T P . We will also outline a sketchy architecture for information mediators 
that provide access to the less restrictive data sources, e.g. Digital Libraries, where data can be stored in 
arbitrary formats. 

The development of our ideas revolves around the mathematical assistant system p MEGA [33] and the 
current initiative in this project to rebuild the system on top of the proof representation framework in [4]. 
We furthermore employ p MEGA’s agent-based search mechanism p -ANTS [9] for a distributed modeling of 
our framework.We will also motivate an application of the approach in a project aiming at a tutorial dialogue 
system for mathematics. 

2 MathAS and theorem proving 

In contrast to proofs found in mathematical textbooks, proofs constructed by computer systems, i.e. theorem 
proving or proof planning systems, are composed of derivations from elementary logic, where the focus of 
attention is on syntactic manipulations rather than on the underlying semantical ideas. The problem seems 
to come from the lack of intermediate structures in machine-oriented proofs, e.g. resolution or sequent 
calculus or natural deduction calculus proofs, that allow atomic justifications at a higher level of abstrac-
tion. For instance, Huang [17] introduces the following three levels of justifications which can be found in 
mathematical proofs: 

(i) Logic level justifications are simply verbalizations of the logical inference rules, such as the rule of 
Modus Ponens. 

(ii) Assertion level justifications account for derivations in terms of the application of an axiom, a definition 
or a theorem. For instance, an extract from a textbook proof may read: 

“since e is a member of the set A , and A is a subset of B , according to the definition of 
subset, e is a member of B ”. 

(iii) Proof level justifications are at a yet higher level. For instance, a proof can be suppressed by resorting 
to its similarity to a previous proof. 

It is the assertion level that is of central interest in this paper because of its direct connection to math-
ematical databases. Now let’s consider an assertion A . There may be several ways in which this assertion 
can be used depending on the proof situation to which this assertion is introduced. For instance, let A be the 
assertion from the above example, i.e. the definition of subset:

r w w u w u 1 1eato e t e m ea to  
V r m V  r m 

This assertion allows us to derive: (1) a u m from a u V and , (2) from a u V and a �u m ,  wa se t eam ea to wsusVt w u m(1 Vfrom 
(3) from , (4) etc. 

1This notion of assertion which we will at times referred to as knowledge-based assertions is not to be confused with the 
same term that is used by mathematicians to refer to statements which are asserted to a proof. The latter which we call proof-
based assertions in the rest of this paper consist of derivatives or constructs produced during the proof or some relevant axioms or 
assumptions introduced to the proof. 
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A theorem prover/proof planner, called a prover from now on,2 that operates on the calculus level can 
only achieve such conclusions after a number of proof steps to eliminate the quantifiers and other connectives 
such as implication and conjunction. On the other hand, most human mathematicians would be satisfied 
having those conclusions derived in one step from the assertion. Furthermore, such a prover would have 
to search in a huge search space for every formula is necessarily decomposed according to the logical 
quantifiers/connectives it contains and it must account for all the resulting proof situations. 

As has been discussed in the introductory section, knowledge-based proof planning constructs (or, plans 
for) proofs that are cognitively adequate for human users. Since (knowledge-based) proof planners operate 
on conceptual levels that are generally more abstract than the logic level, they require more advanced in-
frastructure and employ special data structures designated for such purposes. The next subsection briefly 
discuss these issues. 

2.1 Formalization of the problem 

We take as the starting point for our approach the proof development environment p MEGA [33] whose core 
consists of a proof planner together with a hierarchical plan data structure (PoV(S ). The proof format in p MEGA is based on the Natural Deduction (ND) calculus introduced by Gentzen [14]. A linearized version 
of ND proofs as introduced by Andrews [3] is employed. In this formalism which is implemented in the 
proof planner in p MEGA [18], an ND proof is a sequence of proof lines , each of them is of the form: 

1 
Label gbf Derived-formula Rule premise-lines 

where Rule is a rule of inference in ND or a method, which justifies the derivation of the Derived-formula 
using the formulae in the premise-lines. Rule and premise-lines together are called the justification of a 
line. g is a finite set of formulae which are the hypotheses the derived formula depends on. 

A problem of proof planning consists of a theorem (to be proved) and the assumptions to be used to prove 
the theorem. A proof planner operates on a set of methods to be used to construct a proof plan following a 
set of proving strategies.3 The theorem and assumptions are expressed as deduction lines in a PoV S where 
all the assumptions are marked as closed and the theorem is marked as open. The proof planner then uses 
the methods to come up with actions to update the PoV S . The aim of the proof planning process is to reach 
a closed PoV S , that is one without open lines. 

Methods (which include the more restrictive notion of tactics) and strategies facilitate the most dis-
tinguished features of knowledge-based proof planning in comparison to traditional theorem provers. In 
a PoV S , several different levels of abstraction are maintained and kept consistent. As the proof planner 
evolves the proof objects at one level, corresponding proof objects at other levels are possibly created to 
keep them accordingly updated. (Note that it’s not always possible to obtain corresponding proof objects 
at other abstraction levels, except those at the calculus level.) The calculus level, which is also the lowest 
level of abstraction maintained in the PoV S , makes sure that the produced proof is a correct one irrespective 
of the level of abstraction it is planned. Figure 1 illustrates the architecture of a hierarchical proof planner 
with a 3-dimensional PoV(S being embedded in a 2-dimensional proof planning representation. The third 
dimension of representation in a proof planner (which is neglected from figure 1 for clarity) contains the 
strategies and further meta-knowledge such as control rules (see [27]) to allow more comprehensive and 
sophisticated problem solving approaches. 

2Remark that we do not rule out the possibility of having the user as one of the (high level) strategies used by proof planning. 
Thus, the user can (partially or completely) intervene in the process of planning a proof with his own strategies of how the proof 
should proceed. 

3Details about methods and strategies are beyond the scope of the present paper. The interested reader is referred to [31, 30]. 
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check for correctness 

Figure 1: Hierarchical knowledge-based proof planning. 

As application of lemmata lies at heart of most (non-trivial) mathematical proofs, it is important that this 
issue be addressed in a realization of any proof planner. In the approach proposed in this paper, the assertion 
level is embedded among the abstraction levels used during the process of plan formation. The assertions 
(which includes lemmata and definitions) thus play the role similar to that of methods. That is, the assertion 
agents, which are described below, operate in parallel with the proof planner to offer applicable assertions 
in the current proof situation. 

In p MEGA, a proof planning process starts with a task, a data structure designed to encapsulate a com-P � � ��� � ���� � ����� 
plete (sub-)problem. Formally, a task is a pair � consisting of an open line of the PoV(S ,� � � ��� � � � ��� 

, and a set of lines from the PoV S , P � ����� � . is called the task line whose formula is called task��� � ��� 
formula. Members of P � � � ��� are called the support lines or supports for the task line . 

Now consider the situation in which the prover is confronting a list of tasks, called an agenda in the p MEGA system, that it needs to solve in order to prove the intended theorem. Among the available strate-
gies/methods, the prover could possibly ponder whether there is a definition/axiom or some previously 
proved result that it can use in the current proof situation to (i) either obtain further closed lines serving as 
intermediate steps for solving one of the tasks; (ii) or refine a goal task (on some open proof line) to some 
subtasks which can be resolved by further proof steps. It now boils down to the question of how assertions 
are to be handled by the proof planner. Since the prover certainly does not want to disrupt the proving 
strategy it is currently pursuing, it would be more helpful if the applicable assertions could be found and 
suggested to the prover by some independent assistants. Assertion agents are introduced to play the role of 
these independent assistants. 

3 Modeling assertion agents 

In this section we propose a module, which we call � below, that models assertion application as distributed 
search processes in the p -ANTS approach [9]. This agent-based formalism is the driving force behind a 
distributed proof search approach in p MEGA. It enables the distribution of proof search among groups of 
reasoning agents. 
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3.1 Formalization 

First we briefly sketch the general application scenario that motivates our approach. We assume a scenario 
where a theorem prover T P is connected to a mathematical knowledge base KsB . T P is currently focusing P � � � � � ������������ 
on a proof task ��� � and candidate assertions ������� are determined in KsB and handed 
over to our assertion module � . The task of � is to compute with respect to proof task � all possible 
logical consequences of the available assertions ��� . 

We propose to create for each assertion ��� one associated instance A ��� � of a generic assertion agent Ao� . The generic assertion agent A � is based on the algorithm Assertion-Application provided in [40, 41]. 
We emphasize that this algorithm only depends on the (logical) formula of the focused assertion and a 
further set of formulae for the proof context (encoded in the current proof task), and both are specified 
as parameters of Assertion-Application. Each assertion agent instance Ao���s� computes and suggests the 
logical consequences of ��� in the proof context � to our module � which passes them further to T P . 

3.1.1 Defining assertion agents 

Generic assertion agents are implemented in p -ANTS agent specification language whose details can be 
found in [9]. The philosophy behind the p -ANTS mechanism in p MEGA is to support an agent society that 
works simultaneously with a proof planner or a human mathematician who works interactively with p MEGA 

to prove a certain theorem. The behavior of these agents is therefore more or less reactive since, otherwise 
the suggestions made by the agents may be well behind the mathematician’s reasoning. Assertion agents 
work amongst other agents who provide various services for the prover including: examining applications 
of (logical) inference rules on the involved connectives/quantifiers, searching for assumptions relevant to a 
particular goal task, searching for intermediate proof steps that are achievable from the premises and possibly 
relevant to a solution of the current goal task, etc. The following LISP-like agent specification, which is 
based on the declarative agent specification language described in [9], demonstrates the implementation of 
a generic assertion agent: 
(agent˜defagent assertionApplication c-predicate

(for Conc)

(uses assertion pre-requisite)

(exclude Prem)

(definition (assertion-appl

(:param assertion)

(:param pre-requisite)

Conc)))

The above assertion agent is defined as a c-predicate agent indicating that its search is restricted to 
open proof lines, i.e. possible conclusions. As assertion can be applied in any direction, e.g. backward, 
forward or even sideward, it is necessary that generic s-predicate and p-predicate assertion agents be 
defined. s-predicate agents search the support lines for possible premises whilst p-predicate agents 
search for multiple premises satisfying certain application conditions from the set of closed lines. The proof 
lines this generic agent looks for are instantiations of the argument Conc, given in the for -slot. The use -
slot contains two arguments assertion and pre-requisite indicating that the agent requires these two 
parameters to be instantiated before it can complete the computation for the rest of the instantiation. The 
exclude -slot on the other hand determines that this agent does not complete any partial instantiation that has 
already contained an instantiation for the argument Prem which stands for the supported proof lines required 
by the corresponding proof rule (see below). The idea for the exclusion constraints is to suppress redundant 
or even false computations. The definition -slot of course contains the computation steps to be carried out 
when the agent is invoked. 
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Rewriting agents: A useful subclass of assertion agents. Mathematical theories often come with equality 
and a set of equations that relate the syntactical objects, or mathematical expressions. Rewriting agents 
check for applicability of equations and, depending on the current proof situation, make suggestion about 
rewriting steps to either simplify a mathematical expression or transform it to a known form, i.e. one to 
which a known solution is related. Rewriting agents were proved to be extremely useful in proofs that 
involve a lot of algebraic computations upon the mathematical expressions occurring in the proof objects. 
Moreover, rewriting agents were recently extended to deal with logical equivalence as follows: A proof 
situation can be equivalently transformed to another proof situation by replacing (under an appropriate 
instantiation) a subformula with another logically equivalent subformula if the gap between the premises 
and the goal formula in the resulting proof situation is judged to be smaller than that in the original proof 
situation. 

3.1.2 Agent-based architecture 

Our approach separates the search for applicable assertions in the following sense: While the prover T P 
may consider different options about what rules, methods, or strategies to use, a set of assertion agents is 
also working spontaneously and concurrently to find out and suggest the applicable assertions. In p -ANTS, 
agents compute and propose p MEGA-commands that invoke proof rules applicable in the current proof 
situation. Such proof rules, if applied, transform the current proof state to a new proof state by modifying 
the PoV S . Rating criteria may be specified and employed in p -ANTS to heuristically sort the computed 
consequences before they are (dynamically) passed to the T P as alternative options for the continuation of 
the theorem proving process. Figure 2 depicts the main features of the p -ANTS system with the assertion 
agents embedded. For further details about the system architecture of the p -ANTS mechanism, the reader is 
referred to [8]. 
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Figure 2: System architecture of an agent-oriented reasoning system. 
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In figure 2:
� MBASE, which will be discussed in more details below, is the local database of mathematics. At the 

moment, all assertions come from MBASE or must be translated to the format adopted by MBASE 

before they can be passed to the assertion module � . 

� MATHWEB [13] is an agent-based logical broker that provides a communication channel between 
different systems to allow them to talk to each other and to exploit the facilities provided by others. 
In this figure, MATHWEB allows p MEGA to exploit the reasoning capabilities provided by external 
systems such as the first-order theorem prover OTTER or the computer algebra system MAPLE. 
Moreover, MATHWEB also allows p MEGA to connect to external databases of mathematics such as 
the MIZAR and ISAR libraries. Through MATHWEB, data from these libraries are requested and 
reformatted to be compliant to the internal representation of the p MEGA system. Then they are 
structured into the hierarchy of theories in MBASE before being passed to the assertion module � . 

� The ND Agent� ’s at the lower left corner of the figure provide p MEGA with the calculus level rea-
soning capability. Recall that when the proof objects at some level of abstractions are evolved by the 
prover, we have to try to keep the proof objects at other levels up-to-date, in particular those at the 
calculus level. In the end, the correctness of the planned proof must be guaranteed by a corresponding 
proof at the calculus level, or the object-level. 

Depending on the size of the knowledge base KsB there could be too many applicable assertions passed 
to � and also too many ways an assertion can be applied to be handled in practice. 

For instance, going back to our running example again, let our current task consist of the open proof line u V Vf e and contain no other assumption about being the superset of any other set or e being a member V 
of some other set with which can have a subset relationship. However, the assertion A is applicable 
in this situation and the outcome of applying our algorithm to this open line is the new open proof line r�V�� uf 1 
(corresponding to a derived subgoal): ff� eata e which is, even though logically 
correct, not a very useful subgoal to be pursued as there are infinitely many ways in which the variable 
could be instantiated. 

We sum up the above argument by claiming that restricted application of assertion is necessary. One 
possible and simple restriction is to impose prerequisite(s), such as simple syntactical criteria or domain 
restrictions, when selecting the candidate assertions that are passed from KsB to � . For instance, regarding 
our running example, a simple but useful heuristic to prove the membership of an object wrt. a set using 
the subset definition is that the task include a closed line stating that is a superset of some other set. It 
is this restricted version of assertion application that has been implemented in the agent-based mechanism p -ANTS in the p MEGA system. 

While such heuristic constraints are not too difficult to realize in toy problem domains, it could be a 
challenging problem in more complex mathematical domains. It’s no longer appropriate just to consider the 
current proof situation as some other proof fragments may be relevant to realize such constraints. Further-
more, there may be different proof techniques that are successful (possibly on different problems) with or 
without a certain constraint. Proof planning, however, has developed more sophisticated ways to guide and 
constrain possible instantiations and applications of assertions (see [27]). The investigation on how some of 
these techniques can optimally be employed on top of our assertion application module � is further work. 

3.1.3 Example 

We present a proof constructed in the p MEGA system using assertion agents. The initial PoV(S formulating 
the problem is as follows: 
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1
1. 1; f symmetric  AHyp �1
2. 2; f symmetric  BHyp �1 1 
THM 1,2; f symmetric  A���B ��

The following proof for the above problem uses the definition of the symmetric relation, viz. (Sym-Def): �1� ��� � w� ����u � w ��u
symmetric  �� � � � , and the definition of intersection (on sets), viz. ( � -Def):  � ��� ���  ��w u �w u��w u� . 

1 
1. 1; f symmetric  AHyp1
2. 2; f symmetric  BHyp��� � w ����u � w ��u
3. 1,2; f � A � A [Sym-Def] 1 ���� w ����u � w ��u
4. 1,2; f � B � B [Sym-Def] 2��u � � u
5. 5; f�� � � A � � � B Hyp��u
6. 1,2,5; f�� � � A [3] 5 
7. 1,2,5; f�� � � B [4] 5 o��u� � � � o� u
8. 1,2,5; f�� � ����� � w 

��u
����uA � � B w ��u And-I 6,7 

9. 1,2; f � A���B � A���B [ � -Def] 5,81
THM 1,2; f symmetric  A���B[Sym-Def] 9 

In the above example, the only rule needs explanation is And-I which is an inference rule of the ND 
calculus performing Conjunction Introduction. The interpretation is: The proof line (8.) can be obtained 
from (6.) and (7.) by taking conjunction of the two formulas in the succedents. Hyp indicates that the given 
proof line is a given hypothesis. The scopes of the hypotheses are rendered by the antecedents of the proof 
lines, i.e. those on the left of f ). Rules denoted by [assertion] indicate the application of assertion . 
In particular, on line (6.), the assertion is (3.) which indicates that the succedent of the sequent on 
line (3.) has been added to the current mathematical database and now serves as a normal assertion. Similar 
remark can be made for line (7.) (and the assertion introduced on line (4.)). 

3.2 Advanced features 

In this section we discuss several interesting features of our agent-based mechanism for assertion applica-
tion. 

3.2.1 Dynamically updated assertion databases 

In order to preserve the completeness of algorithm Assertion-Application ([40, 41]), the mathematical 
knowledge base K B described in the preceding section should not be kept static during a proving session. 
Firstly, since p MEGA employs integrated reasoning systems (possibly distributed over the Internet) through 
the MATHWEB agent architecture [13], new information including additional assertions must be dynami-
cally updated to KsB . Secondly, as a proof proceeds, new derivatives or constructs established by the earlier 
proof steps can be considered as (additional) knowledge-based assertions which in turn may be applied to 
establish further conclusions. For instance, many proofs, e.g. completeness proofs for logical systems, 
center around the construction of certain mathematical structures, e.g. particular models for a certain set 
of formulas. Such constructions/definitions are first introduced in the proof before being used intensively 
throughout the rest of the proof. 

As an illustration, the assertion level proof presented in the example in subsection 3.1.3 dynamically 
augments the assertion database with the formulas on proof lines (3.) and (4.), obtaining the two new 
assertions [3] and [4], respectively. They are subsequently applied to the formula on proof line (5.) to obtain 
(6.) and (7.). 
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The decision of what formulas in the current proof state are to be considered as an assertion is beyond 
the scope of assertion agents. Such decisions must be made by the module that carries out the proof, i.e. the 
theorem prover or the proof planner. The prover then updates the knowledge base KsB with these additional 
assertions. Once new assertions have been added, the associated assertion agents will be created to take care 
of these assertions. 

3.2.2 Agents for combined assertions 

As described in section 3.1, each (instance of an) assertion agent is assigned to a single assertion. This 
restriction is not essential as our formalism for assertion application in principle allows finitely many as-
sertions to be taken into account. It however is related to one of the open questions of the intelligent agent 
community: Should the agents be deliberative or reactive? Taking too many assertions into consideration 
with too many ways assertions can be applied and/or too many orders of application would almost definitely 
lead to combinatorial problems and explode the search space. Furthermore, collapsing too many assertion 
applications into one single proof step potentially introduces very obscure proof steps without sufficient 
justifications. 

However there are cases in which two or more assertions can be combined naturally into reasonable 
single proof steps with comprehensible justifications. For instance, the proof-based assertion that a set A is 
a subset of A���B for some set B which can easily be justified (possibly by a Venn diagram) is the result of r 
applying two (knowledge-based) assertions which are the definition of subset (i.e. ) and the definition of 
union (i.e. � ). However, such flexible combinations of assertions in assertion agents need to be guided by 
domain-specific knowledge. We are currently investigating an extension of the p -ANTS agent architecture 
to allow encoding of such meta-information to the specification of agents. 

3.2.3 Proof search distribution 

So far in this paper, we have described assertion agents as information mediators that are specially designed 
so that the retrieved information can contribute directly to the potential solutions of the problem at hand. 
However, the decision of what technique (i.e. assertion/method/rule/etc.) to be used and under which 
strategy still remains to be made by the prover. That is, the proof search process is distributed among 
different components of the mathematical assistant system such as the proof planner/user, the assertion 
agents, the suggestion mechanism, etc. but only in a weak sense. In order to really achieve a full proof 
search distribution mechanism, it’s necessary to distribute the decision making process as well, at least to a 
certain extent. 

As we don’t want assertion agents to be involved in very long proof search processes, we introduce 
assertion-based task agents to carry out particular proving strategies for the assertion level. Amongst these 
strategies, the two most successful we have discovered so far are Looking-Ahead and Island-Planning: 

Looking-Ahead: is a simple and efficient strategy. In this technique, assertions are not required to be fully 
instantiated and applied to a current proof state. Rather, the algorithm just speculates the proposed 
assertions to see if, by putting these assertions together, there is a way to resolve all the outstanding 
subgoals without generating new subgoals, i.e. all newly generated subgoals are resolved within these 
assertions agents. Since, under this strategy, the assertions may not be completely instantiated, there 
may be potential solutions discovered by Looking-Ahead that do not guarantee any actual solution, 
i.e. no consistent instantiations exist to witness the potential solutions.

This strategy works quite well with the assertion agents due to several reasons: (a) it doesn’t impose
constraints or restrictions on the order of the speculated assertions and thus will not interfere the 
communication between assertion agents and the suggestion mechanism; (b) it is independent of any 
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strategy or method pursued by the prover and thus suits best to the philosophy behind our framework 
of assertion agents; and (c) the outcome of the algorithm can be updated on-the-fly: if the prover has 
committed to further proof steps which generate new outstanding subgoals under new instantiations 
of variables then they can be used to further constrain the potential solutions generated by algorithm 
Looking-Ahead, e.g. some previously acceptable solutions can be ruled out because they violate the 
new instantiations. 

Island-Planning: Melis [28] proposes a powerful technique for proof planning and theorem proving, viz. 
island planning and refinement. Informally, the key idea is as follows: during a problem solving 
process, when there is no clear indication of how to proceed, e.g. which branch of the search tree to 
be pursued among a very large number of possible branches, problem solvers sometimes make extra 
assumptions to figure out a path to the goals before attempting to satisfy these assumptions with the 
current premises. Such extra assumptions are called islands as, at the time they are introduced, they 
are completely isolated from other objects in the domain reasoner’s possession. This is particularly 
common in mathematics when mathematicians attempt to speculate a lemma (or lemmata) that is 
needed to narrow the gap between the goal and the given premises. The remaining question is how to 
come up with the right lemmata (most of the time). Melis [28] suggests that meta-reasoning (using 
meta knowledge about the problem domain) is necessary to produce the right lemmata for the problem. 

Whereas a working version of algorithm Island-Planning has not been realized, substantial efforts 
within our research group have been devoted to this proving strategy. Island planning is, without 
doubt, best suited to assertion agent mechanism introduced in this paper since its objects of reasoning 
are the assertions themselves which can be inserted directly to the current proof situation and further 
reasoning (with the assistance of assertion agents) can be immediately carried out without any dis-
ruption. Issues and applications of island planning to assertion agent mechanism will be revisited and 
further discussed in the next section. 

4 The DIALOG project: an application of agent-based assertion level proof 
planning 

4.1 Overview 

Our approach to agent-based assertion level proof planning is motivated by an application in the DIALOG 

project [7] as part of the Collaborative Research Center on Resource adaptive cognitive processes at Saarland 
University. The goal of this research project is (i) to empirically investigate flexible dialogue management 
strategies in complex mathematical tutoring dialogues, and (ii) to develop an experimental prototype system 
gradually embodying the empirical findings. The experimental system will engage in a dialogue in natural 
language (and perhaps other modes of communication) and help a student to understand and produce math-
ematical proofs. It is important that such a system be supported by a human oriented mathematical proof 
development environment and the p MEGA system with its advanced proof presentation and proof planning 
facilities is a suitable answer to this requirement. 

The overall scenario in the DIALOG project is as follows: A student user is first taking an interactive 
course on some mathematical domain (e.g., naive set theory) within a learning environment such as AC-
TIVEMATH [29]. When finishing some sections the student may be asked to test his learning process by 
actively applying the studied lesson material by performing an interactive proof exercise. Since the learning 
environment is equipped with user monitoring and modeling facilities a user model is maintained and dy-
namically updated containing information on the axioms, definitions, and theorems (hence the assertions) 
the student has studied so far. Also a teaching model is available for each exercise containing information 
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on the mathematical material that should be employed and tested. 
In this scenario we expect the mathematical assistant system to be capable of (i) stepwise-interactive 

and/or (ii) automated proof construction at a human oriented level of granularity for the proof exercise at 
hand using exactly the mathematical information specified in the (a) teaching model or (b) user model. The 
proofs constructed for (a) reflect what we want to teach and the proofs for (b) what the system expect the 
user to be capable of. For interactive tutorial dialogue the support for a stepwise proof construction with the 
mathematical assistant system is of course important, while fully automatically generated proofs are needed 
to be able to also give away complete solutions or to initially generate a discourse structure for the dialogue 
on the chosen exercise. We want to stress that the user model may be updated also during an exercise, hence 
the set of relevant assertions may dynamically change during an interactive session. 

It is easy to motivate the design of our assertion application module for this scenario. Its capabilities 
for assertion application for a dynamically varying set of assertions are crucial for the project. It is also 
essential that reasoning is facilitated at a human oriented level of granularity, since we do not want the user 
to puzzle around with the peculiarities of, for instance, logical derivations in sequent or natural deduction 
calculus. Figure 3 shows a screen shot of the p MEGA system illustrating a proof of one of the exercises 
used in the experiment described below. The proof was found with the assistance of the assertion agents 
(and rewriting agents) who offer their ranked suggestions through the command agents shown in the little 
Commands window at middle left. 

Figure 3: Screen shot of the p MEGA system. 
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4.2 Empirical experiments and preliminary results 

The first of a series of empirical experiments for the project was carried out in February 2003.4 In these 
studies, 24 students with varying background were interacting with an intended tutorial natural language 
dialogue system in a Wizard-of-Oz (WOz) study (see [10]), where the dialogue system was mimicked by a 
human mathematician; the joint task was to construct proofs in naive set theory. Neither the tutor system 
nor the subjects were constrained in this experiments with respect to particular proof formats. The obtained 
corpus has now been analyzed and provides valuable insights in the notion and nature of proofs constructed 
by humans in this field. Some of the relevant phenomena are (a) the level of granularity of these proofs, (b) 
their style, and (c) the aspect of under-specification; e.g. missing references to premise assertions, rule and 
instantiation specifications. 

Findings from the experiment provide us with substantial insights into the following particular aspects 
(in addition to other findings, e.g. about linguistic phenomena): 

� Human-oriented interactive proof: Many research papers in the field of deduction systems refer to 
the notions of human-oriented proofs. However, rather few empirical data are available in the sense 
of our corpus in which proofs were constructed interactively by students and teachers. Many scien-
tist and system developers in the theorem proving community still take for granted that sequent- or 
natural-deduction-based proof representation formats are already a nearly optimal solution for human-
oriented proofs. To the contrary, the corpus we collected indicates that neither the natural-deduction 
nor the sequent calculus nor a pure rewriting based approach are sufficient here, whereas assertion-
level proofs come much closer. We are also able to pinpoint an important aspect of human-oriented 
proofs which has been neglected thus far in the literature of theorem proving and proof presentation, 
namely under-specification (see [5]). 

� User-interfaces for theorem provers: The clarification of the notion of human-oriented proofs is very 
relevant for the design of user-interfaces for theorem provers. Our viewpoint coincides with those 
by Théry [37], who investigates paper proofs instead of interactively constructed proofs with under-
specification, in the sense that a clear separation between the optimally user-oriented proof representa-
tion in the user interface and the usually machine-oriented proof representation in the theorem prover 
appears increasingly important. 

It turns out that both aspects above are closely related to the way that proof search is carried out by 
mathematical assistant systems. As discussed in [5], in relation to human-oriented proofs, it is reasonable 
to differentiate between cleaned-up textbook proofs (which have been investigated in the literature) and 
interactive dialogues on proofs, for instance, between students and tutors, as in our setting. In interactive 
dialogues (on proofs) between a human user and a mathematical assistant system, the system must deal with 
the user’s utterances which contain natural language, formal and informal mathematical expressions among 
other things. For the system to be able to judge several key criteria about the user’s utterances such as: 
Is the proof step proposed by the user relevant to the current proof context? or, How much detail has the 
user ignored by coming up with this proof step?, it is essential that the system reason at the same levels of 
abstraction as those of the user and they share common, or at least similar, proof objects. 

On the other hand, the approaches used by the system and the user to solve the problem can be com-
pletely different: they pursue different strategies, they proceed along the proof in different directions, e.g. 
the user may choose to apply forward proof steps whereas the system proceeds backwardly, etc. More 
importantly, as has been found by studies in cognitive science, humans often switch to different levels of 

4The complete corpus from the experiment is available at the DIALOG homepage http://www.ags.uni-sb.de/ 
˜dialog/ 
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abstraction when reasoning. For instance, rather than performing exhaustive search over the current proof 
situation to find possible instantiations of variables or possible ways to manipulate the current proof objects, 
human mathematicians often sit back to try to look at the problem as a whole, concentrate on the essential 
concepts and the central part of the problem, or speculate some lemmata that could be useful to provide a 
link between disconnected parts, etc. As such, the user’s utterances to the system are usually very similar to 
the islands discussed in the preceding section. Provided with such an island proof step, there are a number 
of challenges the system must be up to: (i) the user might not provide any connection between her proposed 
proof step and the current proof state, (ii) there are often no immediate connections between the user’s proof 
step and the current proof state, (iii) the proposed proof step is invalid but, as it is a remote island relative to 
the current proof state, disproving such false conjectures could be a very daunting task as shown by Autexier 
and Schümann [6], etc. 

As assertion agents and assertion-based task agents facilitate distribution of proof search with varying 
proving strategies and abstraction levels, these challenging tasks can be significantly smoothened. In order 
to overcome the under-specification issue and to facilitate a smooth communication interface between the 
system and the user, the p MEGA system is wrapped up by a Proof Manager which provides value-added 
services such as: providing an interface proof language to facilitate communication between the p MEGA 

system and the tutoring system, providing data structures that allow informal and under-specified expres-
sions from the user to be analyzed and reformatted before passing them down to the mathematical assistant 
system, etc. For details about this formalism and its realization, the reader is referred to [5]. 

5 Mediators and Digital Libraries (DLs) 

5.1 The problems ... 

As discussed by Wiederhold and Genesereth [42, 43], information agents generally connect to DLs and 
obtain information from these rich and highly specified data resources. Since most DLs are general-purpose, 
the format of data stored in these DLs is generally not semantics driven.5 In general, DLs currently store data 
in formats such as HTML and its variants, Adobe’s Portable Document Format (PDF) or Adobe’s PostScript 
which are readable to humans but can hardly be used by computer systems such as theorem provers. The 
assertion agents described in the preceding section are not able to operate directly on such data as they 
assume the input assertions to be (logical) well-formed formulae. 

Before we proceed further, we briefly discuss about mathematical knowledge modeling within the math-
ematical assistant system p MEGA. Mathematical knowledge modeling deals with several general aspects 
such as representation, storage and multiple reuse of collected pieces of mathematical knowledge, creating 
tools for combining knowledge from different sources and interactively exchanging it with numerous ex-
isting mathematical systems. The collected mathematical knowledge is stored in MBASE — a web-based 
distributed database of mathematical knowledge (see [23]). The goal of MBASE is to serve as a storage of 
mathematical knowledge and provide tools for content oriented search and retrieval of the stored informa-
tion. Highly structured and content-oriented, the semantic XML-based language OMDOC6 allows multiple 
reuse of pieces of knowledge. MBASE uses OMDOC as a main data exchange format. Therefore, it can con-
tain formalized mathematical knowledge embodied as structured mathematical objects such as assertions, 
proofs, theories, etc. formulated in natural language. 

5The problem is currently being remedied by research in the Semantic Web community. 
6OMDOC [22] is an extension of OPENMATH [32], a standard framework for transmitting mathematical objects over the 

Internet. OMDOC extends OPENMATH by introducing the concept of Content Dictionaries to allow the semantics of mathematical 
objects to be defined and integrated. 
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5.2 ... and the proposed approaches 

The above discussion exposes two major obstacles for information mediators that provide support to mathe-
matical assistant systems in a general setting: (i) information obtained from Digital Libraries are in general 
not directly usable by MathAS unless it is transformed to the specified formats; and (ii) despite efforts to 
achieve a consensus over a standardized format for mathematical knowledge modeling, several formats ex-
ist, e.g. MATHML [25] and OMDOC for mathematical modeling. Any information mediator providing the 
general infrastructure for MathAS necessarily overcomes these two problems. 

The second problem, albeit non-trivial, is apparently easier to solve than the first one. The facilitator 
approach (also called federation multi-agent architecture) was proposed by the SHADE project [26] and 
demonstrated in the PACT project [12]. In this approach, agents interact through facilitators that translate 
system-specific knowledge into and out of a standard knowledge interchange language. Each agent can 
therefore reason in its own syntax and formalization, asking other agents for information and providing other 
agents with information as needed through the facilitators. Given several existing knowledge interchange 
formats (KIFs), meta-facilitators can be constructed to allow messages in one language to be translated 
to other languages and vice-versa. This is made possible by sharing of the Content Dictionaries used by 
different KIFs. 

The approach we are currently pursuing to solve the first problem is based on the information mediator 
architecture proposed by Wiederhold and Genesereth [43]. The basic technologies towards a solution to 
this problem have been carefully researched by other research groups working in the area of information 
agents and mediators mention in Section 1 including the value-added services proposed by Wiederhold, the 
hybrid approach to information integration by pre-compiling the source descriptions into a minimal set of 
integration axioms proposed by Ambite et al. [2], etc. These technologies include important techniques 
such as: (i) resource locator, i.e. locating the relevant data by systematic profiling and indexing. Wiederhold 
and Genesereth [43] propose that this module can be achieved through facilitation. Facilitation also pro-
vides additional information about resource capabilities; (ii) resolution (including mismatch resolution and 
conflict resolution), i.e. data obtained from remote and autonomous sources will often not match in terms of 
naming, scope, granularity of abstraction, temporal bases and semantics (including domain semantics, value 
semantics). Such mismatches, without an adequate resolution scheme, can at best lead to the mediators’ 
failure to locate the data sources and at worst cause the mediators to return the incorrect information. This 
again emphasizes the significance of semantics-driven representation of data and information. Wiederhold 
and Genesereth [43] propose that resolution is accomplished by automation. 

Due to the availability of the above basic technologies, we will focus in stead on the domain specific 
features of (mathematical) information mediators in the following. The idea, which is still being under 
development, is to treat mathematical assistant systems together with information mediators as a whole, i.e. 
a society of agents, rather than MathAS being the clients who request and receive the information services 
from mediators. 

5.3 MathAS as an agent society 

The underlying vision is to have all integrated components of MathAS, including information mediators, as 
knowledge-based agents working interactively with each other and helping improve each other. While the 
data sources that this society is able to access through the mediators are distributed all over the Internet, this 
MathAS agent society is equipped with its own mathematical knowledge base KB. Now, it is critical that 
the knowledge base KB of the society evolves, i.e. this knowledge is incrementally updated during MathAS 
activities including interactions with data resources which can be external mathematical data bases and/or 
Digital Libraries. It is also important that knowledge acquisition agents be built and incorporated to MathAS 
though this is a non-trivial research problem and relates to a whole research area of AI. Hence, we will adopt 
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the following hypotheses: 

1. Mediators have access to the knowledge base KB consisting of mathematical theories structured in a 
hierarchical taxonomy, i.e. a database contains basic mathematical concepts with their corresponding 
symbolic representation and the relations (at least partially) between these concepts, e.g. MBASE; 

2. The agents of MathAS continually consolidate KB with new knowledge obtained in different ways. 
Such knowledge can be integrated information provided by mediators as they obtain data from ex-
ternal sources, or it can be acquired by the knowledge acquisition agents through interactions with 
human users, or it can also be a theorem successfully proved by the proof planner agent together with 
the constructed proof(s) as well as the invented mathematical concepts during the proof construction 
process. 

3. Not only the mathematical knowledge base KB is improved but also the control information as well 
as the meta-information used to guide the agents’ working, i.e. the agents’ knowledge, must also be 
incrementally updated. That is, the proof planner learns new proving techniques and new method-
ologies or short-cuts, the knowledge acquisition agents have more ways to model the (human) user’s 
knowledge, and the mediators have better ways to disambiguate vague expressions obtained from un-
structured data sources, etc. Notice how human behavior is simulated by these features of MathAS: 
the system learns from other mathematicians (human or machine) and from (digital) libraries, then it 
possibly produces new results and publishes or communicates these new results to others, and so on. 

In the p MEGA system, the first hypothesis has been realized with the representation language OMDOC for 
mathematical documents and the web-based distributed database of mathematical knowledge MBASE. On 
the other hand, the second and third hypotheses are long-term projects and non-trivial as it contains many 
artificial intelligence (AI) problems, in particular those of machine learning and knowledge acquisition. 
Only the problem of learning the proof methods for the proof planner has been partially addressed [20, 21]. 

6 Related work 

Distributed proof search has been one of the fairly new research areas within the automated reasoning 
community as the task of proving a theorem can not be easily decomposed to subtasks that can be solved 
by different processes or agents. The problem largely is due to the interdependencies between different 
branches of the proof tree. These interdependencies in general can not be determined in advance and often 
require that the solutions for subproblems on different branches of the proof tree be sequentially ordered. 
For example, the instantiation of a meta-variable on one branch of the proof tree may determine how the 
proof for the subproblem on another branch will be unfolded. Recently, Harland and Pym [15] introduce a 
distributed proof search mechanism for linear logic. This is possible due to the fact that formulas in linear 
logic are considered as a kind of resources which can be “consumed” as the proof proceeds. Thus, there 
are very few or almost no constraints between different branches on the proof tree. Their work was further 
developed to formulate agent negotiation as proof search in linear logic [16]. 

On the other hand, distributed proof search with the p MEGA system [8, 9] takes a completely different 
perspective: The proof planner delegates the whole subtask to an external reasoner while working on its own 
proving strategies. If the external reasoner returns with a proof for the subtask that is consistent with the 
(partial) solution the proof planner has constructed thus far then a proof for the assigned subtask is taken as 
granted and the proof planner continues to pursues its solution. Nevertheless, in the future if an object-level 
proof of the whole problem is requested, the p MEGA system still has to re-prove the assigned subproblem. 
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With the mechanism of assertion agents, we take this idea one step further. Firstly, the assertion agents 
facilitate new problem solving methods: each applicable assertion offered by assertion agents can be con-
sidered as a new proof method which can be used by the proof planner in the current proof situation. Since 
assertion agents are independent of the proof planner, their services are offered declaratively (through the 
blackboard architecture). The proof planner then can have particular strategies or control rules to allow it to 
deploy the services of the assertion agents in the most optimal way. 

Secondly, with the introduction of assertion-based task agents, the system is able to pursue several dif-
ferent proving strategies in parallel. Considering the proof trees of most non-trivial problems in mathematics 
of which most branches are infinite (due to infinitely many instantiations of the universally quantified vari-
ables), this mechanism provides us with an approach to this dilemma by allowing all proving strategies to be 
tried and tested. However, any solution to this problem certainly requires a more sophisticated multi-agent 
architecture based on powerful cooperative and distributive problem solving mechanisms. We observe that 
the RESINA Project of the Intelligent Software Agents Lab (CMU) [36] also proposes a distributed prob-
lem solving multi-agent framework in which task agents communicate tasks and (proposed) solutions to the 
users (through the interface agents). These task agents are therefore generic and should be able to solve any 
task requested by the users. Our assertion agents, on the other hand, are domain specific and implement a 
set of methods suitable for the theorem proving domain.Therefore, it would be interesting to see how the 
RETSINA multi-agent system infrastructure can be deployed to develop a more sophisticated framework 
for our assertion-based task agents. 

With respect to task-oriented information mediator, a substantial amount of research has been carried 
out by the Information Agents Group at the University of Southern California, Information Sciences Insti-
tute [19]. Most notable are Ambite et al.’s [2] mediator-based approach to integrating information from 
heterogeneous data sources for the domain of logistic planning and Ambite and Knoblock’s [1] approach 
to cost-based query planning in mediators. In their approach, data from heterogeneous sources is gathered 
and integrated before being passed to a query planner whose task is to generate a cost-efficient plan that 
computes a user query from the relevant information sources. In a sense, their information mediator plays a 
similar role to that of our assertion agents. However, it is not clear whether their information mediator has 
access to the state of the plan produced by the query planner in order to concentrate its effort on the more 
relevant information sources. Our approach therefore is much closer to a multi-agent system architecture 
based on a cooperative problem solving mechanism. 

7 Conclusion and Future Work 

In this paper, we proposed a task-oriented information mediator architecture. We presented our formalism 
in an integrated environment for mathematical assistant systems. 

The assertion level introduced by Huang [17] is one of the more interesting abstract levels where theorem 
proving should be carried out. Therefore, it is necessary that the prover be equipped with an adequate 
infrastructure to be able to take full advantage of the inferences offered by the assertions. We developed an 
agent-based mechanism to realize the required infrastructure which serves as an assistant for proof search 
in p MEGA. The agents work as task-oriented information mediator between mathematical knowledge bases 
and the prover. The agents also offer further services such as look-ahead during the proof search process. 
The research bears immediate fruit through our application in the DIALOG project [7] aiming at building 
an intelligent mathematical tutoring system. The realization of natural language dialogue in such a project 
should take full advantage of the assertion level proofs developed by our formalism. 

Task-oriented information mediators is suitable for problem solving applications with well-defined task 
structures that require access to (distributed) knowledge bases. In addition to theorem proving applications 
as described in the present paper, other problem solvers such as logistic planners, schedulers, etc. can also 
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fit into this category. We also described the main features of information mediators connecting to gen-
eral Digital Libraries. However, there are many challenging open problems which require further research. 
The future work also extends to fully automated proof search and proof construction based on the system’s 
knowledge and/or external information sources. The realization of this project in the p MEGA system has 
been partially achieved by the introduction of assertion-based task agents which are built on top of the sug-
gestion agent infrastructure and a blackboard architecture. However, as discussed at the end of section 3.1.2, 
the more complex heuristic-guiding search techniques developed in proof planning are still yet to be fully 
employed by task agents. A solution to this problem requires a more sophisticated multi-agent architecture 
based on powerful cooperative and distributive problem solving mechanisms. Furthermore, whether our ap-
proach developed mainly for theorem proving will eventually be applicable and extendable to other problem 
domains remains a long term research question. 

References 
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